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Abstract — Mode interaction between local and global buckling modes is studied for two types of
thin-walled beam structures, using a method of analysis presented in Part [ of the author's paper
[Mollmann and Geltermann (1989). Int. J. Solids Structures 25, 715-728]. This method involves a
combination of the ftinite strip method and Koiter's asymptotic theory of stability. It appears that
the interaction essentially involves three buckling modes (one global and two locul modes). and
that the inclusion of additional ncarly simultaneous local buckling modes in the analysis does not
alter the results perceptibly (in the case of local imperfections). [n both examples, substantial
reductions of load-carrying capacity due to mode interaction and imperfection sensitivity (up to
about 50%) are observed. Some of the 2nd order fields and 4-index coetficients exhibit a macked
dependence on the value of the load factor at which they are evaluated. For both structures, the
load-carrying capacitics have been determined for ditferent values of the ratio between global and
local erttical loads. When this ratio is greater than one (i.c. when the local enitical load ts smalicr
than the global), the load carrying capacity will exceed the local eritical load it the impertections
are sutheently small.

NOTATION
A cross-sectional area of beam
1A modutus of clasticity
1 length of beam or column
1o half wavelength of mode §
‘\_‘I characteristic bending moment
hY characteristic compression lowd
d,,, 3-index coetlicient in the nonlinear eqns (15) in Part [
d, . 4-index cocllicient
b width of squire cross-section
/ amphtude ol mode i
/e impertection of siame form as mode §
[ amplitude ol global and local mode
S Bonats S itest global and local impertection
h height of [-cross-section
! thickness of plates
u, mode §
u, 2nd order ficld
A load parameter
s critical toad corresponding to mode |

fighoabaiy }'nh-uu

2 global and local critical load
Fonan load-careying capacity
i the A-value used in the computation of u,,

I. INTRODUCTION

The present paper is the sccond part of an investigation dealing with mode interaction in
thin-walled beams (Part 1 Mollmann and Goltermann, 1989). Mode interaction in these
structures occurs when the critical loads of overall and local buckling are nearly the same,
and it usually involves the interaction between one overall, long-wave buckling mode, and
onc or more local, short-wave buckling modes. The method used by us to study these
interaction phenomena is based on the nonlinear theory of elasticity and the general theory
of stability. The background of the method and its relation to existing work in this ficld is
discussed in the introduction to our first paper (see Part I, Section 1). The main features of
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Fig. [. Cross-section and stress distribution in the [-beam.

the method may be summarized as follows: the thin-walled beam is composed of plane,
rectangular plate segments interconnected along longitudinal edges. A nonlinear finite
displacement plate theory is used to describe the behaviour of the scgments. The complete.
nonlincar expressions for the middle surface strains are used. but the formulae for the
changes of curvature are linearized. Assuming an elastic materiat and ““dead™ loading, an
expression for the total potential energy of the structure is derived (in this derivation, it is
assumed that the displacements of the pre-buckling equilibrium state may be neglected).
Koiter's asymptotic theory of stability is used to study the post-buckling behaviour and the
imperfection sensitivity, the buckling modes and the 2nd order displacement ficlds being
determined by the finite strip method. A detailed derivation of the method is given in Part
. An attractive feature of this method is that it is capable of describing the complete range
of behaviour of the thin-walled beam from local to global stability.

The present paper describes the application of the theory to two examples of commonly
uscd thin-walled beam structures. The first example ts concerned with a beam of doubly
symmetrical I-section and loaded by cqual and opposite bending moments at the ends
{overall buckling therctore takes place as lateral buckling). The second example is concerned
with a column of square box-section and loaded by axial compressive forees at the ends (in
this casc overall buckling takes place as flexural column buckhing). The beams are in both
cases simply supported at the ends. It will appear trom the following that significant mode
interaction and imperfection sensitivity occur in both examples.

20 SYMMUETRICAL BENDING OF I-BEAM

We wish to investigate the mode interaction and impertection-sensitivity of an [-beam
with a doubly-symmetrical cross-section as shown in Fig. . The beam is simply supported
and loaded by equal and opposite bending moments (AM) at the ends which result in a
constant bending moment throughout the beam, and a stress distribution in the cross-
section as shown in Fig. 1. We choose the characteristic bending moment (M) as

M=
thereby making
M=iM=i

We may now calculate the three lowest critical loads (2,) and their associated modes at
certain half wavelengths (/,,,..) by means of the finite strip method as explained in Part 1
Section 4. The values of 4, depend on L, as shown in Fig. 2, and the corresponding modes
at some representative half wavelengths are shown in Fig. 3.

In order to investigate the interaction, we choose one global and two of the local modes
as buckling modes (Ist order ficlds) in our interaction analysis (sce Scction 3 in Part I).
The global mode (u, in Fig. 4) has a half wavelength L), equal to the total length of the
beam L. whereas the half wavelength of the two local modes (u, and u, in Fig. 4) is
determined by the local minimum on the lowest A.-curve in Fig. 2. This minimum cor-
responds to L., = .34, which is chosen as half wavelength of both the local modes.
thereby limiting the total length of the beam to a multiple of L, = L. = 134

wave
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Fig. 2. Critical load versus half wavelength.

We wish to study the interaction at different values of Abshjtlocab - 210213 To do
this we investigate beams with L/A equal to 13.0, 15.6. 18.2, 20.8, 26.0 and 36.4, cor-
responding to (AFP 0y vatues of 3.57, 2.57. 1.93, 1.51, 1.01 and 0.57. The three 4,-
values and their corresponding modes (u) are calculated at cach beam length. The modes
are normalized using (9a) in Part [ and further catculations show that the 3-index cocflicients
generally vanish, te.

=0, ./ 41,23} (H
exeept that
tyyy £ 0

as shown in Table 1, for the case of L/h = 13.0.

Since ¢y # 0, iLis possible to obtain un estimate of the tmperfection-sensitivity based
on the Ist order fickds only, provided that we use a 3-mode analysts (a 2-mode analysis will
not be sufliciently accurate without a caleulation of the 2nd order fields). However, we shall
generally include the 2nd order fields in our analysis, and we shall caleulate these fields at
various A-vilues (4,). This will enable us to include the 4th degree terms in the energy
expression and to investigate load-carrying capucities above the local critical load, as
exphained in the following.

The fact that ay,;, ts the only 3-index coeflicient that is different from zero means,
according to (32a) in Purt [, that the mixed local-globul 2nd order fields u,, and u,, will
depend significantly on the Z-value at which they are calculated (4,). and it also means that
the dominunt part of u,, will consist of local modes of the same type as u,, and u; of locul
modes of the same type as u.. The 2nd order ficlds uy, u,,, uyy and uy; will only show a
slight 4,-dependence, which means that only the mixed 4-index coctlicients ¢y, and a5
will be significantly 4,-dependent, whereas the coeflicients ¢y, dy2aa gz and d@yqy will
only depend slightly on 4. The 2nd order ticlds are calculated by the finite strip method as
explained in Part [, Section 4, and are described by Fourier-expansions tn the longitudi-
nal direction. In order to illustrate their shape, we let the computer plot the shape in dif-
ferent cross-scctions as shown in Fig. 5. The deflections perpendicular to the beam-axis
{r,w) are shown in the bottom row of the figurc and are casily visualized. However, it
should be noted that the displacement (1) and the stress (sigma 1) in the longitudinal
direction are plotted along lines inclined at 45°, positive upwards to the right.

We can now calculate the 4-index cocflicients a, ... When we insert the Ist and 2nd
order ficlds directly into formula (29a) in Part [, the convergence is found to be very slow,
but when we use a Fouricr-expansion of the contribution from the Ist order ficlds (as
explained in Part [, Section 4) we obtain a much improved accuracy.
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Fig. 4. Definition of amplitudes of the buckling modes.

In the case of @, . the convergence of the two methods is shown in Fig. 6, where a,,,
is compared with the results from beam-theory using Vlasov's assumptions (see Mollmann,
1982 ; Pedersen, 1982 ; and Goltermann, 1983).

In both our examples we use eight strips for each side of the cross-section (i.e. flange
or web). and in our Fourier-expansion of the 2nd order ficlds we usually include 35 terms.
This was found to provide adequate accuracy in all cases. although it would occasionally
have been sufficient to use a smaller number of strips and Fourier terms,

We have now calculated the critical loads, the 1st and 2nd order fields, and the 3- and
4-index coefficients, see Table | for L/A = 13.0. This enables us to study the interaction and
imperfection sensitivity by solving the non-linear equilibrium equations (15) in Part [. The
solutions of these equations determine a system of equilibrium paths of the type shown in
Fig. 7 for the case of two modus.

Consider the perfect structure under increasing load. starting from the unloaded state.
For small values of the load, the equilibrium path coincides with the A-axis (the prebuckling
path). However, when the load reaches the smallest critical load 2., the solution bifurcates
(point A in Fig. 7). This l-mode bifurcation will often be stable-symmetric and we may in
this case increase the load above 4., due to the post-critical stiffness, until a second bifur-
cation is reached. This unstable bifurcation (point B in Fig. 7) determines the ultimate load-
carrying capacity 4, and appears because of the interaction. In the case of the imperfect
structure, the A, -value will be determined by a load maximum except in the situation
where the imperfection corresponds to the mode of the lowest critical load, where 4, will
be determined by a bifurcation, provided that this mode corresponds to a stable-symmetric
bifurcation (as will be the case for the local mode). The solution of the equations and the
determination of the load-carrying capacity 4,,, can be found analytically in certain cases
(see Goltermann, 1985), but in general requires an iterative calculation. The local and
global critical loads are almost equal in the example where LA = 26.0, and in this case we
may calculate 4,,,, asa function of the global imperfection ( f 3,.) and the local impertection
(f o), where

S bt = EHN (2)
fl*ml = 5?/2 (3)

Table 1. [-beam. Critical loads, amplitudes of modes, 3-index and 4-index
cocflicients of the beam L = 6500 = 13.0A

pi 1.1901-10* /i 7.8339-10°
a3 3.3370-10° / 1.5453-10°
ah 6.6869 - 10 1 17191 10°
a2 —~3.2216- 10
Apth 1.25 1.00 0.75
ann 1.2751-10* 1.3813- 10 1.4967- 10*
aiiss ~1.2260-10° -8.4097- 10 -6.3023- 10°
diiy 5.0480-10° —3.6758-10" —3.4032-10°
dsszs 1.3767-10° 1.3782- 10 1.3800- 10°
aiays 1.9355-10° 1.9382- 10 1.9425-10°

ay33s 1.9178-10* 1.9195-10° 1.9223-10°
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Fig. 6. Convergence of a,,, (LA = 260, b/t = 25).

These calculations will be based on the Ist order fields only, using a 3-mode perturbation
analysis, as mentioned earlier, and giving the results shown in Fig. 8. We note a reduction
of up to 60% in the load-carrying capacity duce to the interaction and imperfections. [The
magnitude of the imperfections corresponds to those recommended in the Danish Code of
Practice on Thin-walled Structures (1984).]

We shall now include the 2nd order displacements in our calculations in order to obtain
more accurate values of the load-carrying capacity than those shown in Fig. 8. We wish to
cxamine the influence ol the A-value at which the 2nd order ficlds are computed (4,), and
we therefore calculate the 2nd order ficlds and the 4-index cocfficients for different values
of 4, (sce Table 1).

We shall also compare the results of a 2-mode analysis with those of a 3-mode analysis
(including 2nd order ficlds in both cases). It should be noted that there will be small
differences between the 2nd order ficlds and the 4-index coeflicients computed from a 2-
mode or a 3-mode analysis, respectively, due to the different orthogonality requirements in

gglobal A
Fig. 7. Equilibrium paths.
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the two cases. Formulace for these differences can be obtained with the help of (32a) and
(32b) in Part [, resulting in a connection between the 4-index cocflicients given by

. - Ha v ey H a3t a0 a0
A, Lt 2modes = Q1 Ymodes . : .
aph o 2 mnles s g8, Yiodes YA

i, —A)

4)
Figure 9 shows the load-carrying capacity as a function of the local imperfection for the
case of nearly equal globat and local eriticalt loads. A thin curve corresponds o a calculation
based on a constant 4,-value, but a thick curve to an interpolation between ditferent 4,-
values determined by the condition that 4, should equal 4,,,,.

It can be scen from Fig. 9 that the three methods (analysis with two or three modes
including 2nd order ficlds and 4, -interpolation, and a 3-mode analysis based on [st order
ticlds only) give nearly the same results for small imperfections ( f%../t < 0.25), but that
the deviations between the results become more pronounced with increasing imperfections.
The influence of the 4,-vartation 1s moderate in the present case.

Load—Carrying

Capacity
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Ap/he=075|" " 2 Modes
i .
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xp/xﬁojs_f/
Ap/A,=1.00
0.25 Pl
000
0.00 025 0.50 0.75 1.00
* /.
GLOBA A fw t
AJLOBAL R LOCAL 401

Fig. 9. 4. versus [ 5./t at nearly equal critical loads.
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Fig. 10. 4., as a function of ./t at A0/l — 3 §7,

We now repeat the calculations that lead to Fig. 9, but at a higher level of
Al jatlocd (namely 3.57). in order to examine the influcnce of the post-local stiffness and
to investigate the possibility of reaching a load-carrying capacity above A", Figure 10
shows the result of these caleulations. [t can be seen that the value of 4, has a significant
influcnce on the load-carrying capicity A, and that 4., decreases with increasing 4
values. We also note that the computations with 2nd order ficlds included predict load-
carrying capacitics above A" (for small imperfections). In the previous calculations we
have used the perturbation method at A-values above 41", However, it was explained in
Part I, Scction 3, that the use of the perturbation method for i-values in an interval
iy € A £ 4, generally requires that all eigenfunctions with associated cigenvalues in this
interval should be included among the buckling modes. In the present case we have a whole
cluster of closely spaced local eigenvalues in a neighbourhood just above Y, and the
assoctated local modes should therefore be included among the buckling modes, so that we
would have to perform a multi-mode analysis. However, for the special case of purely local
imperfections of the type &3u,, it is shown in the Appendix that we may confine ourselves
to a 3-mode analysis (with buckling modes u, u,, u,) and stilt obtain results of a satisfactory
aceuracy.

We saw that a.; # 0, and this implies that a,,r # 0 when the mode u;- is of the same
type ias uy, and that a3, # 0 when the mode uy is of the same type as u,. [t can now be seen
from (324) and (32b) in Part [ that u,, and a,;,, will vary continuously with 1 in a
neighbourhood of A'¥, whereas u,; and g, y; will possess singularitics for A = %Y (see also
the values of a1, and a5, in Table 1). However, when we wish to determine the load-
carrying capacity 4., for local imperfections of the type &%u,, the parameter &, in the non-
lincar equations (15) in Part I will be zero, and the 4,,,-valuc will not depend on ay5;. It
follows that the present 3-mode analysis will not be affected by the singularitics, and we
obtain a valid solution by the use of the proposed method.

The behaviour of u,; and u,;, and the fact that the results of a 3-mode analysis differ
considerably from those of a 2-mode analysis but only slightly from an analysis with more
local modes, lead us to the conclusion that the interaction is essentially an interaction of
three modes, and that a 3-mode analysis should therefore be used for the present structure.

The influence of the value of A®etl el on the load-carrying capacity could be
described by figures such as Figs 8-10. A better and more intelligible description will be
obtained by plotting 4., as a function of the ratio A&* /1l 4¢ certain local imper-
fections. This has been done using a 3-mode analysis, where we interpolate between different
4p-values (as in Figs 9 and 10), and the results are plotted in Fig. 11. The figure shows that

/max May be greater than A8<Y (for small imperfections). as soon as A#°™" exceeds A0,
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Fig. I1. The load-carrying capacity as a function of local imperfection and of 2 P

We also note that the imperfection-sensitivity is most pronounced when the two critical
loads are nearly the same. A similar graph is presented in Fig. 5.52 of Goltermann (1985),
but in that work the results are obtained by a 2-mode analysis with the 2nd order fields
caleulated for a constant A,-value. The latter graph (Fig. 5.52) shows a qualitatively similar
behaviour to Fig. | Lin the present paper, although the numerical values of the load-carrying
capacity differ somewhat from those of Fig. 11,

3 SQUARE BOX-COLUMN UNDER AXIAL COMPRESSION

The second example concerns a column with square box section as shown in Fig. 12
The column is simply supported at the ends and loaded by a compressive force (AN),
which muakes the compressive stress constant throughout the column. The value of the
characteristic compressive foree is

N=FEA (5)

thereby making £ cqual to the compressive striin.

In the same way as in the first example we calculate the three lowest critical loads at
various hall wavelengths using the finite strip method, sce Part 1. The resulting relation
between critical load (4,) and halt wavelength (L, ,..) 1s plotted in Fig. 13, where one of the
curves represents a double critical load. The £.-curve of a certain type of mode (i.e. @ mode
with certain symmetry properties) is always smooth, but since we show only the three lowest
s~values at each value of L, .. in Fig. 13, this causes two of the curves to end rather
abruptly when they cross another 4 -curve and therefore cease to belong to the three lowest
/. -values.

We now compare our critical loads with values obtained by meuans of approximate
theories. For L, ,../b > 10, the global mode is rather closcely approximated by the well
known Euler column, as scen in Fig. 13. The local critical loads are estimated by assuming
that the local modes can be represented approximately by the classical theory of plate
buckling. We describe the plate deflections by the appropriate analytical solutions of plate
theory, Goltermann (1985), and thereby find the critical loads by fulfilling suitable boundary
conditions at the longitudinal cdges. We note that the approximate critical loads provided
by plate theory are quite accurate in the range L,,../b < 6.

It can be seen that all the modes in Fig. 14 are symmetrical with respect to at least one

A r . E=10
t_ | AN I XY R
® b S b=175
L t=z=5
Y
b PAT A L
[ - B LA

Fig. 12. Box-column geometry and louad.
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Fig. 13. Critical loads versus half wavelengths.
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~

of the four axes of symmetry, and the present example will therefore be confined to
deflections symmetrical with respect to one of those axes. The symmetry implics that it will
only be necessary to perform the calculations for half the cross-section, as shown in
Fig. 15,

We see in Fig. 14 that the modes satisfying the relevant symmetry conditions have the
forms shown in Fig. 16, where the amplitudes are also defined. The depicted modes are the
global mode u, and the local modes u, and u,, corresponding to the lowest and second
fowest A-curves in Fig, 13, The two local modes have the same half wavelength equal to
the width of the beam (b)), which corresponds to the local minimum on the lowest 4.-curve.
The global half wavelength is cequal to the total column length (L) which is taken as a
multiple of the width (L7 = 14, 18, 20, 22, 24, 32) thus giving values of 4"/A cqual to
2.68, 166, 136, 1,13, 095 and 0.54.

We use these three modes as buckling modes (Ist order ficlds) in our interaction
analysis, since the 2nd local mode u,y has a critical load 417 (= 4.2021 x 10 %) which is only
43% higher than the eritical load A2 (= 2.9446 % 10 ) of the lirst local mode u,. We
calculate the 3-index cocflicients ,,, by means of the finite strip method (see Part 1, Section
4), und find that in gencral

(l,/,»zo ;‘,j'.{e{l.Z,B} (6)
except that
iy #0

just as in the previous example. The value of this cocflicient s listed in Table 2 for L/h = 14,
where we also find the corresponding critical loads and the amplitudes which satisfy the
normility condition (Vi) in Part L.

We note that it is possible, as in the previous example, to obtain an estimate of the
imperfection-sensitivity based on the Ist order ficlds only, provided that we use a 3-mode
analysis. Following the -beam example we shall calculate the 2nd order fields u,, and the
four-index coctlicients «, .. at certain A-values (denoted by 4,).

We first consider the column with nearly equal local and global critical loads
(74 = 0.95) and calculate the 2nd order fields at various Ag-values. Figure [7 shows a
computer plot of the shape of the 2nd order fields in a beam cross-section at the quarter-
point (x/L = 0.25) and for 4, = 4.

If the local modes are determined approximately by plate theory, the corresponding
in-planc displacements # and ¢ of the local modes will be zero. In the literaturc, it is
frequently assumed (see Benito and Sridharan, 1985a.b; Sridharan and Ashraf Ali, 1985;
and Loughland and Rhodes. 1980) that the plate deflection w of the 2nd order fields is
equal to zero, thereby satisfying the orthogonality between the Ist and 2nd order fields. It
can be scen that this is not satisfied by the more accurate sotution in the present example.

SAS 25:7-C
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Fig. 13, Cross-section used in the analysis.
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Fig. 16. Modes and amplitudes.

However, it will be a good approximation to neglect the contribution of the 2nd order w
to the 4-index coetlicients.

Having determined the 4-index coctlicients «, .., (see Table 2 for L/h = 14), we wish
to study the influence of the following factors on the load-carrying capacity of a locally
imperfect column: (1) the value of the Toad factor 4, used for calculating u,, and «a, ... (2)
the cffect of omitting the 2nd order ficlds and representing the displacements solely as lincar
combinations of buckling modes, and (3) the effect of using cither a 2-mode or a 3-mode
analysis (i.c. including onc or two local modes, and in both cases accounting fully for the
2nd order ficlds).

Figure I8 shows the influence of the above three lactors on the load-carrying capuacity.
It can be seen that the analysis with three Ist ocder ficlds (and omitting the 2nd order ficlds)
gives a reasonably good estimate of the imperfection-sensitivity at small imperfections (just
as in the case of the [-beam). When we include the 2nd order fields in our analysis, the load-
carrying capacity is somewhat increased due to the post-critical stiffness of the local mode,
and a small A,-dependence s observed. In order to investigate the possibility of attaining
Ama-values greater than the local critical load A4, we shall turn our attention to the shortest
column, where the global critical foad is signilicantly greater than the local critical load
(l“."“’h“”/’}.f.l"“"“ _ 2()8)

We now wish to use the perturbation method for Z-values in a region which contains
a cluster of closely spaced cigenvalues. According to the general theory of Section 3 in Part
I, the associated local modes should then be included among our buckling modes. However,
it is proved in the Appendix that in the case of local imperfections of the type S¥u,, we may
restrict ourselves to a 3-mode analysis with buckling modes u,, u,, u,, and still obtain
sufficiently accurate results.

Table 2. Box-column. Crtical loads, amplitudes, 3-index and 4-index coctlicients of a column with L = 2450 = 146

A 7.8840-10 /, S4004-10 ! sy 1.7136-10 °

A 29446410 I S.376%-10 ¢

A 4202110 f\ 7.8011-10 °

AJA, 125 INE 1.00 0.75 0.50 0.25

@y, —L1007-10 % —10622-10 Y ~=10604:10 *  —1.0546-10 " —1.0319-10 ' —L.0M7-10 *
s — 073810 T —LOR2R-10 T —69077-10 *  —44577-10°%  ~33045-10 Y —2.6248-10 *
ayyy —R.3159-10 ° 1.2709-10 7 —1.6277-10 * =20865-10 7 —1.3942-10 7 ~1.0943-10 ’
gy 7.8045-10 ° 7.8105-10 7.8290-10 * 7.8632-10 " 7.8882-10 * 7.9125-10 *
Gy 150891077 1.5105-10 7 1.5127-10°7 1.5163- 107 1.5192-10"" 1.5221-10°7

Ay 2.9264-10 7 2929810 7 2.9227-10 7 29410-10 2.9462-10 7 2.9505-10 7
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Fig. 18. Load-carrying capacity 4,,, versus local imperfection at nearly equal critical loads.

Load—Carrying

Capacity
AHAX/XG
125 i
[N —
.~ 'S ~,
N NG TN
LN T
100 e oS L N o
.. 4.\_ h T
T T i
~ . '
T e
O 75 ~femremmah - T e e A
. ~——
YT — e
025 +— - - R !
|
000 4———r — !
00 05 1.0 1.5 20
* s
Sroca”'t

Ao\ a2 68

3 Modes
2nd Order
Ap =025

A\, =0 50
AN ~0.75
A/ A =1.00

c XA 1S

Fig. 19. Load-carrying capacity versus 4, and local imperfection.

The 2nd order fields and the 4-index cocflicients are calculated at various 4,-values to
illustrate the influence of 4, (see Table 2). We compute the 4,,,-value as a function of the
local imperfection and 4,, and the results are shown in Fig. 19. It can be seen that the
influence of 4, on A, is rather pronounced in this case, and we note from Figs. 18 and 19
that 4, decreases with increasing 4, (as long as 4, < AL"). A similar result is seen in the I-
beam example and in Benito and Sridharan (1985a), which concerns an I-column. However,
our findings differ from those of Sridharan and Ashraf Ali (1986), where there is no 4,
dependence due to the omission of the 2nd order fields u,, and u;. These authors argue
that the shape of u,, in the cross-section will be similar to that of u;, and that u;, will
therefore be very small duc to the orthogonality conditions, but this is doubtful in view of
formula (32a,b) in Part [ (scc also the values in Table 3). In order to obtain the correct

Table 3. Box-column. Amplitudes of 2nd order fields (L/b = 14, 4,74, = 1.00, x/L = 0.25)

(. j) D (1.2 (1.3) 2.2 (2,3 3.3
Sigma 1l 3.0731-10°"  (4441-10°°  23170-10""  1.0119-10-7  2.4600-10"7  3.1303-10"’
u 1.9375-107°  1.0067-107°  [.3621-10°° 464131077  4.5556-10°*  4.7020- 107>
(e w) 70507-10°%  7.1638-107%  50448-10°*  2.0239-10°*  2.5042-10°°  4.5996-10"°
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Fig. 20. Load-careying capacity versus local impertection.

ADPENE =2 68

value of A, we must evidently put 2, = 4., and we therefore interpolate between the
different curves in Fig. 19 so as to get one resulting £, -curve, as shown in Fig. 20. We
construct the same curves and make similar interpolations for an analysis with two modes,
and also plot the resulting curve in Fig. 20.

We note that 4, may exceed the local eritical load by up to 13% if we use a 3-mode
analysis with 2nd order ficlds included, where the 2o0d order ficlds are obviously necessary
in order to account for the post-critical stiffness. Figures 18 and 20 show that a calculation
with both Ist and 2nd order ficlds leads to higher 4, -vulues when we use a 3-mode analysis
than when we use a 2-mode analysis (as in Sridharan and Ashrat Ali, 1986). This may seem
surprising in view ol the fact that we have one degree of freedom less in the atter case and
therefore might expect a stiffer structure. However, a 3-modce analysis must describe the
behaviour more accurately than a 2-mode analysis and thus provide more accurate values
of the load-carrying capacity. It is shown in the Appendix that the inclusion of additional
nearly simultancous locul buckling modes in the analysis only gives rise to negligible changes
in the results,

Finally, we shall determine /4, as a function of the ratio 2E0r0 /0D (= 200200y 4nd
the local imperfection. Tn order to do this we perform the same kind of calculations and
interpolations tor the remaining column lengths as we did in connection with Fig. 20. The
results are shown in Fig, 21, This graph shows that the load-carrying capacity may exceed
the local critical load when the global critical load is greater than the local, and that the
imperfection-sensitivity is most pronounced when the two critical toads are nearly equal.
We observe the resemblance between the present results and the analogous results for the

Load—-Carrying Capacity
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1.5 20 25
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Fig. 21, Load-carrying capacity as a function of local impertection and 4

ratio.



Interactive buckling in thin-walled beams—I1. Applicauons 745

[-beam (see Fig. 11). It will be seen that there is a marked difference between our results
(as shown in Fig. 21) and the corresponding results for the van der Neut column (see van
der Neut, 1969). However. our results agree (at least in a qualitative way) with those of
Graves-Smith (1969). Koiter and van der Neut (1980), Sridharan and Benito (1984), and
Sridharan and Ashruf Ali (1986). the latter concerning an I-column.

4. CONCLUSIONS

The post-buckling behaviour of two types of thin-walled beam structures has been
investigated (lateral buckling of an [-beam. and flexural column buckling of a square box
beam). The method of analysis used for these structures was presented in Part [ of the
authors’ paper and involves a combination of the finite strip method and Koiter's asymptotic
theory of stability.

[t appears from both examples that substantial reductions of the load-carrying capacity
(up to about 50%) occur as a result of imperfection sensitivity and mode interaction,
even though each mode. by itself, corresponds to a stable-symmetric bifurcation. In both
examples, it is found that. in the case of a 3-mode analysis. there is only one nonvanishing
3-index coetlicient, namely a,,,. This mcans that the mode interaction essentially involves
three modes (one global and two local modes). and it is concluded that the calculations
should in these examples be based on a 3-mode analysis with 2nd order fields included (to
account for the post-critical stiffness of the local modes). This conclusion is confirmed by
the fact that signiticant differences are observed in both examples between the results of a
2-mode and a 3-mode analysis.

The fact that ¢y, £ 0 also means that the mixed 2nd order ticlds corresponding to a
combination of the global and one of the local modes depend significantly on the valuc of
the load factor at which they are evaluated (4,). and this implics that some of the associated
4-index coellicients will exhibit a similar 4,-dependence. When caleulating the load-carrying
capactty A, it is theretore important that the said 2nd order fields and 4-index cocllicients
should be evaluated at the correet value of the load factor, namely for 4, = 4.

For both examples, the load-carrying capacitics have been determined for different
values of the ratio of global to local critical load. It is found that the load-carrying capacity
may in certain cases exceed the smallest critical load. This happens if the smallest critical
load corresponds to local buckling and the imperfections are local and sufliciently small. It
is shown that a 3-mode analysis will be sufficiently accurate also in such cases, so that
additional nearly simultancous local buckling modes need not be included in the analysis.
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APPENDIX

We wish to compare the results of a 3-mode analvsis (buckling modes u,. u.. and u,) with those of a multi-
mode analysis. in which additional local modes u, tof the same type as u:) are included among the buckling
modes.

In the present Appendix. small Latin indices assume the values 1 2.3, and small Greek indices are used to
number the additional buckling modes u,. We shall use barred symbols to denote quantities associated with the
J-mode analysis (e.g. 0,,. 4,4 etc.). and unbarred symbols to denote quaatities assoctated with the multi-mode
analysis (€.2. W,,. W,. do A, €1C.). We have already established some general properties of the coeflicients in
the cquilibrium equations (see Section 4 in Part 1), namely. that a 3-index coctficient vanishes when the sum of
the associated wave numbers is even, and a 4-index coefficient vanishes when the sum of the wave numbers is
uneven.

Square box column

We tirst consider the box column. In order to simplify the following argument, we shall introduce certain
approximations. We assume that the locad buekling modes ;. u and u,, can be deseribed with sutticient accuracy
by conventional plate theory (this is known to be a rather good approximation). This implics that the tangential
displacements w, r ot the Tocal modes as well as the assoctated in-plane internal forces vamsh, and that the normad
displacement w vanishes at longitadinal junctions between plate segments. The 3-mndex cocflicients are given by
(28) and (27) in Part I Since the modes u, remam unchanped when we pass from the 3-modce analysis to the multi-
maode analysis, it follows that

d . .. (A1)

We proceed to consider the additional 3andex coctlicients (such as o, ) that appear in the multi-mode
analysis. Using the symmctry properties of the modes, and the fact that the in-pline iternal forees of the local
modes vanish, we lind from (28) and (27) in Part [ that only the 3-index coctlicients

ayy and oay, (A2)

should be tiken into account in the multy mode analysis, while the renunning 3-mdex coetlicients are very small
and can be neglected.

deinddex coefficients -suppose that we reverse the orientation of the coordinate axes in the cross-section (the
yz-system becomes the p* z*-system, see Freo Al [ will be seen that, in the case of buckling modes v, and u,,
the expressions for the displicements in the v# 2*-system will be idenucal to those in the pz-system, while a change
of sign oceurs for the displacements of buckling modes u, and u, when we change coordinate system. This implies
that . 3- or 4-index coctticient vanishes it the total number of appearances of the indices Tand 3is an odd number.
In particular, we have

Ayoxy Ty, Tl Ty :()L (A3)

Wyzy T tlyay 7y Sdyy = “j
Now the 2nd order displacements u,, of the multi-mode analysis are orthogonal to the additional buckling modes
u,. but this will not necessarily be the case for the 2nd order displacements i, of the 3-mode analysis. Using (32a)
in Part [, we deduce the tolfowing relation between the two kinds of 2nd order displacements

v,-

Fig. Al Buckling modes and coordinate systems (1.2) and (3*.2*).
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i, =u,+¥ -2y (Ad)

B e
Tla—4)

where the summation is with respect to the additional buckling modes. If we now utilize the previous results
concerning the 3-index coctficients [see (A2)]. we conclude that

4, = &,. in general, except that v, # @,,. {AS)

[nserting these results in the formulae for the d-index coefficients {(29a) and (29b) in Part 1]. we derive the
following results :

e G =daa
- {A6)
Aypay Edyag

=
i
Y
e
o
=
:

!
k1]
i

while the remaining coetlicients of type a,,,, vanish. We proceed to study those 4-index coefficients that depend
on the additional buckling modes u, (such as q,,,. 4,,.4. etc.). However, we shall confine our attention to the
coefficients a,..,, d::1,. dhyy, 4nd ayy,y since only these will be needed in the following discussion. In order
to evaluate the above coefficients, we shall introduce further approximations with regard to the 2nd order
displacements.

The local 2nd order ficlds u,,. u,,. and u,, will be described by von Karman plate theory. In this theory. the
non-linear terms in the tangential displacements are neglected in the strain measures £, and this approximation
will be sufficiently accurate for the present case of ocal buckling due to column loading, where no overall in-
planc displacements of the plate segments occur. Each side of the box column is treated as a rectangular plate
with the following boundary conditions : Hemp's conditions at the longitudinal junctions, and the Marguerre -
Tretftz conditions at the end sections,

The in-plane forces of the approximate local 2nd order ficlds can now be represented by means of Airy stress
functions of the form

2n
fora, 1 = [ +y, () cos i

. . n n
foru, ¢ = fL(y) cos e +4 (1) cos / 2+ p)y

R
{

[ b pgiv (A7)

) n
foru gt - £y} cos p (p v —g.3) cos

where the wave numbers of modes vy, 0, and uy are denoted by n, (n+p), and (n+q), respectively. It can also
be shown that our approximate 2nd order fiekds (A7) satisty the relevant orthogonality conditions,

It should be noted that the boundary conditions at the end sections of the approximate 2ad order fickls (A7)
differ from those used in our previous analysis {see (3) i Part 1. However, for short-wave local buckling the
ditference in results will only be noticeable within a short distance from the end sections.,

It we transtorm the formulae (292) in Part 1 for the 4-index coetlicients by means of Green's theorem and
neglect the contribution from the 2nd order normal displacement (which can be shown to be insignificant), we
tind that the 4-index coetlicients associated with the focal modes can be expressed solely in terms of the stress
functions. Using the stress functions (A7), we obtuin the following results

LetO < |pl <a—L and 0 < |g] < a—1. Then we have

yyy =0

dyny =0 for |pl # gl {A8)
ding # 0 for 1pl = |g|
We shall not exhibit the rather long and complicated formulae which are found for the non-zero d-index coellicients.

However, Tuble 1A shows a comparison between the values of the 4-index coetlicients provided by the present
approximate method, and those obtained from a finite strip computer analysis as described in the main paper.

Table 1AL
Finite strip
Coceilicient Approx. method computer analysis

- 8.03-10 " 78{-10 "
Uarag 5.25+10°" 5.09-10 "
Uizgn 27-10 " 262:10 "
dazan 5.53-10-* 5.36-10 *
diaae 7.67-10°"% 7441077
Eoass 8.50-10°* 8.23-10°°
Mode u, u, =u, u; = Uy

Wave No. 14 15 3
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Fig. A2. Matrix of lincarized equilibrium equations for a 9-mode analysis.

It also found from the computer analysis that all the cocflicients for which the approximate analysis predicts
the value zero do n fact become negligibly small.

Fyuilibrium equations of mudti-mode analysis

We shull now consider the equilibrium equations of the multi-mode analysis for the case of local impertections
of the type Etu,. Now, asa result ol the approximate analysis deseribed on the previous piages, we have obtained
the following results [see (A2), {(A3), und (AS8)]:

Ay =gy =00 ayyyy =dyy =00 dyy, =0 (AY)

A comparison with the nonlinear equilibrium equations (15) in Part [ now reveals that a L-mode analysis with
E,#0, 8 =&, =&, =0 will describe a possible equilibrium path. This initial equilibrium path is theretore
determined by the equation

(A0}

I

(e =)+l =4

Sinee day.. > 0 tor the box column, the natural branch of (Al0) is a constantly rising curve, and we wish to
determine any branching points that may exist on this path. The condition for a branching point is that the
determinunt of the lincarized version of the equilibrium equations (15) in Part [ should vanish (the resulting
cquation must then be solved together with (A10)]. Using the previous results (A2), (A3), and (AS) for the
coetlicients we find that the determinant assumes the form shown in Fig. A2 (a determinant ot a somewhat similar
type was obtained by Byskov in connection with the van der Neut column ; see Byskov, 1988). It will be seen that
the determinant in Fig. A2 equals the product of the two determinants surrounded by dotted lines.

Consider first the small 2 x 2 determinant. It follows from (A ) and (A6) that the coetlicients gy, @22, and
wyyy, which appear in this determinant are the same for the 3-mode and the multi-mode analysis, so that the
corresponding brinching points will be identical for the two types of analysis,

Consider next the second (large) determinant enclosed in dotted lines. Using the values of the coctlicients
furnished by our approximalte analysis, we can show that this determinant cannot vanish for values of ($,.4) on
the initial equilibrium path.

We conclude that, in case of the box column, we obtain the same branching points whether we use a 3-mode
analysis or a multi-mode analysis (or at least very nearly the same branching points in view of the approximations
that have been introduced in our multi-mode analysis).

This result was confirmed by a 5-mode computer analysis of the box column with imperfections &tu,, which
yiclded very nearly the same results as the 3-mode analysis.

Bending of [-beam
In the case of the I-beam subjected to bending moments, it will not be sutficiently accurate to use von Karman
plate theory to describe the local 2nd order ficlds, because some of these ficlds contain signiticant in-plane
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displacements (see e.g. u, in Fig. 5). It would seem, therefore, that we cannot derive reasonably simple approximate
expressions for the 4-index coefficients in the present case.

However, we have performed two computer analyses of the I-beam with local imperfections £%u, (a S-mode
and a 7-mode analysis. respectively, for the case of L/h = 13, 4,/4. = 1.25, and with halfwave numbers for the
modes equal to 1, 10, 10, 6, 9, 11 and 12). In both cases the corresponding branching points differ only slightly
from those predicted by a 3-mode analysis. This suggests that a 3-mode analysis will be sufficiently accurate also
in the case of bending of an I-beam.



